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Abstract. Understanding the properties of complex systems requires the analysis of their energy
landscape. Using simple models for the crystalline compounds MgF2 and CaF2 as example
landscapes, we show that, in addition to the construction of tree-graph approximations of the
landscape, the threshold algorithm can be employed to calculate local densities of states for regions
of the landscape around local minima, and to determine the probabilities of transitions between
such minima. This information is then correlated with the results of global optimizations and
relaxations.

1. Introduction

Studying the energy landscapes of complex systems is crucial to understanding many aspects of
their behaviour [1,2], ranging from the relaxation dynamics in glasses [3–5] and spin glasses
[6, 7], the folding transition in proteins [8–11], the success of combinatorial optimization
procedures [12, 13], the properties of clusters [14] and polymers [15], to the question of the
very existence and stability of crystalline compounds [16–18]. A number of techniques [19–25]
have been employed to explore the energy hypersurface of multi-minima systems, with special
emphasis on the detection of local minima and the determination of the energy barriers
separating them. Besides other results, these techniques have been used to construct highly
simplified representations of the energy landscape, in particular, the construction of single-
lump tree graphs [26] (also called e.g. disconnection trees [27], disconnectivity graphs [15] or
1D projections [28]), where basins around local minima of the energy landscape are represented
as nodes of a tree graph.

However, this picture is in most instances too simplified to allow a description of e.g. the
temperature-dependent dynamics of the system. Using the lid algorithm [12, 29], it has been
found for a number of discrete energy landscapes like those of spin glasses [7, 30], lattice
networks [31], or the travelling salesman problem [12] that it is necessary to take both the local
density of states, and the way the basins are connected into account. The former influences
e.g. the dynamic stability of the basin, while the latter (sometimes called the ‘entropic’ barrier
structure) together with the energetic barriers controls the rate of transition between two local
minima and their equilibration. These stability aspects are of greatest importance for the
existence of metastable crystalline compounds: a (meta)stable compound corresponds to a
locally ergodic regionR of the energy landscape [18], where the equilibration time withinR

is considerably shorter than the escape time, and shorter than or comparable to the observation
time, τeq < tobs � τesc. In previous work, we have employed the so-called threshold
algorithm [26] to construct a more refined version of the single-lump trees mentioned above,
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where the basins are represented by a sequence of nodes weighted by the number of states
within energy slices. As was shown by Hoffmann, Sibani and co-workers [32], random walks
on such weighted trees can be used to represent the relaxation dynamics of complex systems.

In this paper, we go beyond the purely energetic aspects of the energy landscape. Starting
from a number of deep-lying local minima of the potential energy of two example systems,
we have used the threshold algorithm to determine the energetic barriers between these local
minima, the local densities of states of the individual basins, and the transitions between the
basins for sequences of prescribed energy lids. These quantities can be represented by so-called
transition maps, and we find that they are correlated with the results of global optimization
procedures used to determine local minima of the energy landscapes. As examples, we have
chosen (computationally accessible) simplified models of two related crystalline systems,
MgF2 and CaF2, with two formula units in a periodically repeated simulation cell, where the
energy is calculated via a two-body interaction potential between the ions.

2. Model and computational aspects

Analysing the energy landscape of a solid globally is a highly non-trivial task, and even with
modern computers available it is necessary to employ a number of radical simplifications to
achieve this task. Thus, we have introduced periodic boundary conditions, and we employ two
formula units (z = 2) of atoms per simulation cell. Furthermore, we use a simple empirical
two-body interaction potential between the atoms consisting of a Coulomb and a Lennard-Jones
term, in order to allow for fast calculations of the energy of a given configuration [33]. For the
systems MgF2 and CaF2 (z = 2), the Lennard-Jones parameters wereε(MgF2) = 0.3 eV/atom
andε(CaF2) = 0.4 eV/atom, respectively. Furthermore,σij = Ri +Rj , whereRi is the radius
of ion i (RMg2+ = 0.78 Å, RCa2+ = 1.06 Å, RF1− = 1.33 Å). The Coulomb energy was
calculated by a method using Ewald summation as proposed by deLeeuwet al [34]. In the
context of this model, the total energy was calculated within 10−3 eV/atom.

In earlier work [33], many local minima for the energy landscapes of these systems had
been determined using simulated annealing. In the present work, these minima served as
starting points for so-called threshold runs: starting from a minimumxi , random walks were
performed (85% and 15% of the moves were changes of relative coordinates and cell vectors,
respectively), where only moves which did not exceed a sequence of prescribed energy lidsLk
were accepted (the lids were usually spaced in energy by 0.1 eV/atom). During such a random
walk, periodically quenches (usually every 5×104 or every 104 steps, each with a length of 104

steps) were performed, in order to check whether a barrier to some other minimum had been
crossed. The lowest lid value where this occurs constitutes an upper bound on the actual energy
barrier between these two minima. From this, we constructed tree graphs approximating the
energy landscape (cf. figure 1). During the analysis of the threshold results, many new local
minima were detected that had not been encountered during the initial global optimization. Due
to the limited computation time not all local minima have been used as starting configurations
of threshold runs; however, because of the very low total frequency of occurrence and relatively
high energy of the omitted minima, they were very unlikely to represent important structure
candidates. A list of the most important structure candidates encountered when investigating
MgF2 and CaF2 is given in table 1. In order to gather some rudimentary statistics, the random
walk was repeated for five seed values of the random-number generator, for each lid value and
starting minimum.

In addition, the energy of the states was sampled (every 100th step) during each run,
yielding a distributionn(E;Lk, xi) that is approximately proportional to the local density of
statesg(E;Lk, xi) in the pocket below the lidLk. However, due to the very fast (approximately
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Figure 1. Tree-graph diagrams. For description of the minima cf. table 1. Connections of lines
mark lid values where a transition to other minima is found for the first time. The heights of the
bars on the minima indicate the energies up to which 100% (dark) and 80% (light) of the threshold
runs ended at the starting minimum. (a) MgF2, (b) CaF2.



6490 M A C Wevers et al

Table 1. Crystallographic data for the (idealized) minima. The symmetry analysis was performed
using the programs SFND [38] and RGS [39].

Space group Cell constants
Minimum (crystal system) a, b, c (Å); α, β, γ Atom x y z

Rutile P42/mnm (136), a = 4.608, b = 4.608, c = 3.007 F (4f ) 0.300 0.300 0
VI-a tetragonal α = 90.00, β = 90.00, γ = 90.00 Mg (2a) 0 0 0

Anatase I41/amd (141), a = 3.897, b = 3.897, c = 9.089 F (8e) 0 1/4 0.595
VI-b origin choice 2, tetragonal α = 90.00, β = 90.00, γ = 90.00 Mg (4b) 0 1/4 3/8

VII-a Pmn21 (31) a = 3.287, b = 4.999, c = 3.713 F1 (2a) 0 0.427 0.368
orthorhombic α = 90.00, β = 90.00, γ = 90.00 F2 (2a) 0 0.935 0.811

Mg (2a) 0 0.764 0.308

VI-c P4/mmm (123), a = 2.870, b = 2.870, c = 3.824 F1 (1d) 1/2 1/2 1/2
tetragonal α = 90.00, β = 90.00, γ = 90.00 F2 (1c) 1/2 1/2 0

Mg (1a) 0 0 0

CdI2 P3m1 (164), a = 3.088, b = 3.088, c = 4.017 F (2d) 1/3 2/3 0.727
VI-d trigonal α = 90.00, β = 90.00, γ = 120.00 Mg (1b) 0 0 1/2

VI-e Cmc21 (36), a = 2.913, b = 6.718, c = 6.685 F1 (4a) 0 0.003 0.297
orthorhombic α = 90.00, β = 90.00, γ = 90.00 F2 (4a) 0 0.717 0.553

Mg (4a) 0 0.294 0.750

V-a P121/m1 (11), a = 8.038, b = 3.882, c = 6.000 F1 (2e) 0.250 1/4 0.250
monoclinic α = 90.00, β = 81.00, γ = 90.00 F2 (2e) 0.901 1/4 0.475

F3 (2e) 0.250 1/4 0.750
F4 (2e) 0.599 1/4 0.025
Mg1 (2e) 0.144 1/4 0.518
Mg2 (2e) 0.356 1/4 0.982

Fluorite I4/mmm (139), a = 3.831, b = 3.831, c = 5.414 Ca (4d) 0 1/2 1/4
VIII-a tetragonal α = 90.00, β = 90.00, γ = 90.00 F (2a) 1/2 1/2 1/2

cubic setting:
a = b = 5.418, c = 5.414

VII-b Cmcm (63), a = 3.469, b = 7.789, c = 5.482 Ca (4c) 0 0.104 1/4
orthorhombic α = 90.00, β = 90.00, γ = 90.00 F1 (4c) 0 0.798 1/4

F2 (4b) 0 1/2 0

CaCl2 Pnnm (58), a = 4.536, b = 5.646, c = 3.569 F(4g) 0.230 0.167 0
VI-f orthorhombic α = 90.00, β = 90.00, γ = 90.00 Ca (2b) 0 0 1/2

VII-c Amm2 (38), a = 3.393, b = 3.104, c = 7.842 F1 (2b) 1/2 0 0.612
orthorhombic α = 90.00, β = 90.00, γ = 90.00 Ca (2b) 1/2 0 0.326

F2 (2a) 0 0 0.879

VIII-b P4/mmm (123), a = 3.732, b = 3.732, c = 2.873 F (2e) 0 1/2 1/2
tetragonal α = 90.00, β = 90.00, γ = 90.00 Ca (1a) 0 0 0

exponential; cf. figure 3, later) increase ing(E), one obtains sufficient statistics only for
energies close to the current lid. Thus, we need to use the overlap betweenn(E;Lk, xi) for
the sequence of lidsLk, to reconstruct the density of states of the pocket, up to a normalization
factor [26].

One should note several aspects of these local densities of states (d.o.s.). Firstly, only
for systems with large numbers of atoms/simulation cell can these local d.o.s. yield good
quantitative approximations of the vibrational d.o.s. of the real (infinite) system. Secondly,
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unless the pocket is very small and devoid of internal structure, ‘entropic’ barriers within the
pocket can influence the outcome of the sampling. Thus, the statistical sampling yields an
effective local d.o.s. that represents the local entropy of the region of the energy landscape that
is accessible during the finite random walks. Of great relevance for the relaxation dynamics
and kinetic stability of the local minima is the inverse slope of nearly linear pieces in the
semi-logarithmic plot of the local d.o.s., since this is proportional to the so-called ‘trapping
temperature’Tc [12,13]. While forT > Tc, the probability for finding an (allowed according
to the Metropolis criterion [35]) state with higher energy during an MC run is larger than that of
finding those states that are lower in energy due to the exponentially growing number of states,
this probability scenario is abruptly reversed forT < Tc. Therefore, forT < Tc the system is
trapped in the pocket of the landscape, while forT > Tc, this region is practically invisible to
the random walker. Together, the sampling effect and potential of trapping constitute a strong
dynamical aspect of the local d.o.s. Finally, there can occur shifts in the d.o.s. at energy values
where very large side-basins of the landscape are added. In figure 3 (see later) such shifts
are not depicted, because they are only of minor relevance for the dynamics of the system
compared to the slope of the d.o.s.

Since the random walks are of finite lengthlr (usually 2.5× 105 or 5× 104 steps), there
is a non-zero probability that the system will not reach a certain minimumxj , even if there
exists a path below the current lid betweenxi andxj . This transition probabilitytj i(Lk; lr ) is
approximately given by the number of successful transitions fromxi to xj . In order to visually
represent the transition probabilities, we construct so-called transition maps (see figure 2).
Each minimum region is represented as a circle, and the energy of the minimum is indicated
by the shade of grey. Minimum regions that appear to be extended over a large volume of
configuration space are depicted as ovals. The percentage within the circles refers to the
probability (summed over all lids) with which runs starting at a given minimum ended up in
that minimum at the finish of the threshold run. (This is also referred to in the tree graphs,
where the ‘lid’ value up to which the quench runs reach the starting minimum exclusively
(100% ‘returns’) is indicated by a dark bar, while lightly shaded bars indicate that the starting
minimum was reached in over 80% of all quench runs.) The size (in per cent) of the transition
probabilities into neighbouring minima is represented by arrows of various sizes and colours.
The relative barrier heightLrel(xi → xj ) = L(xi → xj ) − E0(xi) for the lowest transition
found fromxi to xj is coded in the colours of the arrows. For a better overview two diagrams
for the transitions are drawn, one for transition probabilities equal to or above 5%, and one for
those below 5%.

The threshold runs presented here took about one year of CPU time on several HP9000-735
workstations. For more technical details on various aspects of the threshold runs—the
identification of minima regions, the influence of the lengths of threshold runs, the construction
of the transition maps and the densities of states, and the statistical aspects of the results—see
reference [36].

3. Results

3.1. MgF2

In the MgF2 system the most important new local minima found during the threshold runs were
anatase and a number of structures containing prisms as coordination polyhedra (cf. table 1).
Note that only the ‘prism’ structure VI-e with the highest frequency of occurrence has been
used as a starting configuration. Some of the rarer local minima (percentage of occurrences
in all threshold runs for each minimum<1%) lie in subregions with an energy range of
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Figure 2. Transition maps. Transitions from minimum A to minimum B are depicted as arrows of
various sizes depending on the frequency of occurrence:>20%: triangular arrows;>10%: bold
tips and lines;>5%: plain tips and lines;<5%: dotted lines. Transitions>5% and<5% are shown
in (a)/(c) and (b)/(d), respectively. Minima are represented by circles with their ‘return’ probability
(see the text) given in per cent. Relative barrier heights (in eV/atom)Lrel for the transitions (see
the text) and energies (in eV/atom) of the minimaEmin are coded in colours and greyscales of
the arrows and circles, respectively. (a)/(b) MgF2. Energy scale forEmin: black: 6−6.2; dark
grey:6−5.9; light grey:6−5.7; white:6−5.5. Energy scale forLrel : black:60.4; blue:60.6;
green:60.8; yellow:61.2; red:>1.2. (c)/(d) CaF2. Energy scale forEmin: black:6−6.8; dark
grey:6−6.6; light grey:6−6.4. Energy scale forLrel as for MgF2.
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Figure 2. (Continued)

−5.200 to−5.500 eV/atom (coordination number,CN = 4, 5) and−5.550 to−5.900 eV/atom
(CN = 5, 6). No specific information about the details of the barrier structure within these
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regions is available from the present threshold runs.
The diagrams 1a and 2a/b for MgF2 show some important features. The two energetically

lowest minima are VI-a (rutile) and VI-b (anatase). On the route from higher-energy regions
to the rutile minimum there lies a sevenfold-coordinated structure VII-a, which exhibits the
smallest energy barrier in this system. There are found high probabilities of transitions
between VII-a and VI-a. However, the transition from VI-a to VII-a is not observed for
L < −5.8 eV/atom, whereas the first transition from VII-a to VI-a already occurs at
L = −6.105 eV/atom. In contrast, VI-b is connected to the main branch of the tree via
the fivefold- and sixfold-coordination region (denoted as ‘other’ minima in the following) and
the overall probability for staying in the anatase region is very high. VI-a and VI-b are separated
by a large energy barrier of about 0.85 eV/atom (measured from VI-a to the saddle region).
Since VII-a is separated from VI-a by a barrier of only≈0.013 eV/atom, energy considerations
indicate that the structure should undergo a transformation into the rutile structure quite easily
(even at very low temperatures). This is reflected in the fact that the probability for a transition
from VII-a to VI-a is the highest one observed for MgF2.

The structure VI-c corresponds to a half-filled NaCl structure with a ccp arrangement
of anions and half the octahedral sites occupied by cations. This minimum is considerably
lower in energy than VI-d, a layer structure of CdI2 type, but the extended region surrounding
VI-c contains many closely related 5- and(5 + 1)-coordinated structures as local side-minima,
within an energy range of 0.30 eV/atom. The last major region of the landscape contains
some structures consisting of prisms, together with a variety of other fivefold- and sixfold-
coordinated structures. Except for one such ‘prism’ structure, they have not been used as
starting minima because of their low frequency of occurrence. The one prism structure chosen
(VI-e) consists of a three-dimensional network of edge- and corner-connected prisms oriented
in alternating directions. In the case of VI-a, VI-c, and V-a, the energy barrier to other minima
is lower than the lid value at which the first transitions to other minima are observed (see the
100% bars in figure 1(a)), indicating a relatively high entropic barrier. The relative stability is
lowest for VI-d and VI-e.

The transition maps show that the anatase region is quite isolated, because only few
transitions to and from this minimum are observed, and those only at relatively high energies.
Minimum regions with a distinct direct connection (low relative barrier and high transition
probability in at least one direction) are VII-a to VI-a, VI-d to VII-a, and VI-e to VI-c.
The minimum V-a consisting of bipyramids appears to be structurally related to VI-b; but
relatively few transitions are found in either direction. The transition map suggests that all side-
minima would easily transform into rutile (VI-a) or anatase (VI-b) at moderate temperatures,
probably via the sevenfold-coordinated structure VII-a, or the sixfold-coordinated structure
VI-c, respectively.

The accessible local d.o.s. for the minimum regions of MgF2 are plotted in figure 3(a).
Quite generally, we observe a rapid exponential increase in the local d.o.s., which flattens
towards higher energies, but still remains exponential on average. Thus trapping should play
an important role in the dynamics. Regarding the d.o.s. in high-energy regions (>−5 eV/atom,
where one can more or less assume that all minima are connected) one notes that, e.g., the slopes
of VII-a and VI-d are quite similar in that energy range. This could mean that these minimum
regions have a common sub-region on the energy hypersurface at high energies. Support for
this hypothesis comes from the transition map, which shows that there exists a direct transition
path with a high probability from VI-d to VII-a. Likewise, the d.o.s. of the minima VI-a and
VI-c show a similar growth behaviour at high energies, suggesting a common region of the
energy landscape, which correlates with the relatively high probability for a transition from
VI-a to VI-c at higher energies.
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Figure 3. Local densities of states plotted on a semi-logarithmic scale. (a) MgF2. Filled diamonds:
VI-a; open diamonds: VI-b; filled circles: VII-a; open circles: VI-c; filled triangles: VI-d; open
triangles: VI-e; squares: V-a. (b) CaF2. Filled diamonds: VIII-a; open diamonds: VII-b; filled
circles: VI-f; open circles: VII-c; filled triangles: VIII-b.

3.2. CaF2

In the case of CaF2, two variants of structures consisting of monocapped prisms (VII-b and
VII-c), a distorted variant of the CaCl2-type structure (VI-f ), where the ‘octahedra’ have
internal angles of less than 80◦ (i.e. a distortion along the trigonal axis leading to a nearly
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hcp arrangement of the anions), and a structure consisting of edge- and face-connected cubes
(VIII-b), were found as new local minima (cf. table 1). Here, VII-c may be interpreted as the
result of a twinning of two ccp anion arrangements or as a slightly distorted CrB structure
where only every second Cr position is occupied. However, no deep local minimum with high
barriers analogous to the anatase structure in MgF2 was found in CaF2.

Compared to the case for MgF2, the barrier structure is much simpler (cf. figure 1(b)),
and the energy barriers are typically higher in the CaF2 system (cf. the 100%-return bars in
figure 1), except the barrier from VI-f to VIII-a. Analogous to the pair VII-a and VI-a in MgF2,
there is a saddle region between VI-f and VIII-a (fluorite) with a barrier far below the lowest
lid at which a transition from VIII-a to any other minimum region is observed.

Overall, the most frequent transitions lead directly to VIII-a (fluorite) or VI-f, while all
observed transitions leaving VIII-a occur at very high energies only, except the transition
to the (energetically essentially unstable) structure VI-f (see figures 2(c)/2(d)). This probably
explains why the global minimum VIII-a is more often observed in the simulated annealing runs
for CaF2 than the global minimum VI-a in MgF2. Of all the side-minima, only VII-c exhibits
no particularly frequent transition from or towards the remainder of the energy landscape.
In addition, all transitions from VII-c occur at intermediate relative energy barriers (0.90–
1.00 eV/atom), but the return probability is relatively high. This minimum region appears
to take an intermediate position on the energy surface, being a direct neighbour to all other
minima except to VI-f.

Regarding the local d.o.s. (see figure 3(b)), the VI-f minimum exhibits the largest
(accessible) density of states of all minima for low lid values, like the VII-a region in MgF2.
Just as in the MgF2 system, the deepest minimum (VIII-a) does not show the highest accessible
d.o.s. during random walks for energies above−6.500 eV/atom. But, in contrast to the case for
MgF2, it does not appear possible to use the slopes of the local d.o.s. of the different minimum
regions for grouping minima together.

4. Barrier structure and relaxation dynamics

The most important similarity between the related potential energy surfaces of MgF2 and
CaF2, differing only in the cation radius, pertains to the lowest minima found, VI-a (rutile)
and VIII-a (fluorite), respectively. Each corresponds to the only experimentally confirmed
crystalline structure in the respective system, and VI-a and VIII-a are neighbours to very
large regions in configuration space with an extremely low energy barrier, VII-a and VI-f,
respectively. In both cases, the transition from the higher to the lower minimum defines the
barrier, which is extremely low in energy relative to the higher minimum. In contrast, the
transition in the opposite direction is the first one observed but it occurs at lids well above the
actual barrier height.

Clearly, these side-minima strongly enhance the probability of reaching the global
minimum during the stochastic optimization. However, the surprisingly high frequency with
which VII-a was found during the simulated annealing runs indicates that there must be some
features of the energy landscape that stabilize this region against VI-a. The most likely
explanation is that ‘entropic’ barrier contributions play a role. This is supported by evidence
coming from Monte Carlo runs [36] that the system finds the supposedly ‘easy’ exit from this
region in some cases only after more than 8× 104 steps†.

† So far, a clear definition of an ‘entropic’ barrier has not been agreed upon. We consider an ‘entropic’ barrier a
measure of the difficulty of crossing (at constant energy) from region A to region B in configuration space via a random
walk.
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Quite generally, we observe that simple energy barriers as presented in a quasi-one-
dimensional tree graph do not suffice to describe the ‘difficulty’ that the system encounters in
finding a path along which to leave a minimum region. In order to give some quantitative feeling
for the strength of the additional barriers, we have included bars for the minimum regions in
the tree graph, indicating the likelihood that the system returns to the starting minimum during
a threshold random walk. These bars show that many of the local minima have a stability
range far exceeding that of the purely energetic barriers to a neighbouring minimum.

A similar ‘entropic’ stabilization appears to occur in the CaF2 system, where structures
analogous to VII-a in MgF2 have been encountered quite often as end configurations in short
quench runs. However, in the case of CaF2 this region in configuration space does not appear to
contain stable minima: after quenching for about 5×104 additional steps the global minimum
VIII-a was always reached. On examination of long quench runs it was found that the system
often lingers in this energy region for a long time,>5000 steps (cf. reference [36]), and this
(metastable) region can be identified quite clearly as lying energetically between−6.74 and
−6.76 eV/atom. Again this demonstrates the influence of entropic barriers on the performance
of stochastic algorithms.

The major difference between CaF2 and MgF2 is the existence, in the MgF2 system
only, of a deep local minimum with high energetic barriers and a considerable entropic
weight, which might well be able to exist: the anatase structure VI-b. But neither in real
experiments nor during the optimization runs [33] is this structure easily accessible, while
e.g. VII-a was found comparatively often in the simulations. We observed that out of a
hundred simulated annealing runs, only 2 ended in region VI-b, while 36 ended in region VI-a,
and 62 in (a total of eight) other minimum regions with energies higher than VI-b. At least
regarding the results of the simulated annealing runs, we can suggest an explanation based
on the analysis of the energy landscape. For one, the VI-b region is surrounded by rather
high energy barriers, resulting in a high Arrhenius factor exp(EB/T ), essentially prohibiting
access for temperatures below the trapping temperatures of the competing local minima. In
addition, we note that the accessible local d.o.s. of the VI-b region shows approximately
exponential growth, withTc(VI-b) ≈ 0.2 eV/atom, in the saddle region (E ≈ −5.8–
5.3 eV/atom), making it impossible to enter the pocket forT > Tc(VI-b). Finally, the trapping
temperature in the energy range of the saddle is much lower for the anatase region than for the
rest of the landscape,Tc(VI-b) < Tc(rest). As a consequence, by the time VI-b becomes
accessible atT = Tc(VI-b), the system has most likely already descended into another
minimum region long ago, negating the fact that e.g.E(VI-b) < E(VII-a), which would
favour VI-b over VII-a at low temperatures. But even if we could walk at low temperatures
for a nearly infinitely long time to ensure equilibration of the system, thermal equilibrium
would actually favour the deepest minimum, VI-a (rutile), over VI-b (anatase)! Thus, the
anatase region will not be easily accessible from the outside during Metropolis-type random
walks.

To gain further insight, we have performed MC random walks at temperatures ranging from
0.001 eV/atom to 0.5 eV/atom (twenty runs for each temperature), starting at the minimum of
region VI-b. At the end of each run, quenches were performed, in order to determine how the
probability of returning to minimum VI-b changes as a function of temperature. The result
confirms our analysis based on the results of the threshold investigations: we find a quite
rapid drop in the return probability over a rather narrow temperature range around the trapping
temperatureTc(VI-b), just as one would expect from a system that is rather abruptly released
from an exponential trap. Thus, even if we had reached region VI-b during some random walk
at temperatures aboveTc(VI-b), the system would, with a high probability, leave this region
again without ever getting close to the actual anatase minimum.
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5. Discussion of system size effects

So far most of the work analysing continuous energy landscapes has dealt with finite clusters
[14,27], polymers [15] or proteins [10], where the whole physical system could be represented
in the model. For crystalline systems, this is not possible, and the full physics and chemistry
of the real crystal would only be obtainable for sizes that are for all practical (computational)
purposes infinite. But many aspects of the barrier structure of the infinite system are necessarily
related to that of the finite-degree-of-freedom approximation, as long as the macroscopically
thermodynamically stable and metastable modifications can be represented in the finite system.
As has been discussed in earlier work [37], for solids with short-range forces (including
shielded Coulomb interactions) the height of the saddles (measured in eV/atom relative to
the higher-lying minimum) that need to be crossed when following the minimum-energy
path between two basins decreases and reaches zero in the thermodynamic limit. Here, the
minimum-energy path is that route (or routes) on the landscape, along which the height of
the highest saddle is as small as possible. Thus, the stability of a metastable modification
of the compound will depend on the ‘difficulty’ of finding such a minimum-energy path,
i.e. on the entropic barriers of the system represented e.g. by the transition maps and the return
barriers.

From our experience with simulations of binary and ternary ionic compounds, we suggest
that in many instances about eight formula units (i.e. 50–100 atoms) are sufficient to determine
almost completely the most stable energetically best structures of the infinite crystal. Of course,
using larger simulation cells will lead to more side-minima (for combinatorial reasons), and
possibly to whole new minima basins. It is very difficult to estimatea priori which of these,
if any, will be important for the large-scale structure of the energy surface, and the dominant
transition paths. But since the structures of the deep-lying minima found for small simulation
cells reappear for larger ones, independent of cell size, we expect the transitions among them
to be important in larger systems as well. Of course, new alternative transition routes are likely
to appear. But this will not change the qualitative aspects of the large-scale transition maps,
just the quantitative values of the individual probabilities. Thus, an extensive study for at least
eight formula units should represent the large-scale structure of the real energy surface at least
qualitatively. Such an analysis using the threshold algorithm appears feasible with the next
generation of high-speed workstation clusters.

6. Summary

Our approach to understanding the complex energy landscape of chemical systems is based
on its reduction to characteristic properties. Tree-graph diagrams, which have been used in
recent years as so-called ‘lumped’ representations of energy landscapes restrict the analysis
to energy barriers. In this work, we have added transition maps that represent the probability
for specific transitions between local minima, together with local densities of states, which
yield further information about the energy landscapes such as the stability of minima and the
general shape of the potential surface. Of particular importance is the interplay between these
features of the landscape; e.g. the comparison of energetic barriers with transition maps at
various energies leads to the recognition, at least in a qualitative sense, of entropic barriers
in the system. From the results obtained we have gained new insights into the dynamical
properties of the landscape, as seen by the correlation of the results of simulated annealing
runs with the information about the landscape gleaned from energy barrier diagrams, transition
probability maps, and local densities of states. Currently, these consistent results for model
systems can only yield hints about the behaviour of real chemical systems. But we expect that
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transferability to real compounds will be improved in the future, with rising computational
power and faster algorithms for energy calculations allowing us to analyse larger systems with
more precise energy functions.
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